2 SEM TDC ECOH (CBCS) C 4

2022

(June/July)

ECONOMICS

(Core)

Paper: C-4

(Mathematical Methods in Economics-II)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: 1×8=8
 - (a) Which of the following is a first-order difference equation?

(i)
$$\frac{dy}{dx} + ay = b$$

(ii) $\frac{d^2y}{dx^2} + ay = b$

(iii)
$$y_{t+1} + ay_t = c$$

(iv) All of the above

- (b) Let A be a matrix of order $m \times n$ and B be a matrix of order $p \times q$. Then A and B are conformable for multiplication in the form AB, if
 - (i) m=p
 - (ii) n = p
 - (iii) m = q
 - (iv) n = q
- (c) If $A = \begin{bmatrix} 2 & 4 & 3 \\ 3 & 5 & 1 \end{bmatrix}_{2\times 3}$, then the norm of matrix A is
 - (i) N(A) = 5
 - (ii) N(A) = 9
 - (iii) N(A) = 4
 - (iv) None of the above
- (d) For a curve representing u = f(x, y), if $\frac{d^2y}{dx^2} = -ve$, then the curve is
 - (i) convex to the origin
 - (ii) concave to the origin
 - (iii) horizontal to x-axis
 - (iv) vertical on x-axis

- (e) The CES production function represents
 - (i) increasing returns to scale
 - (ii) diminishing returns to scale
 - (iii) constant returns to scale
 - (iv) All of the above
- (f) A discriminating monopolist maximizes his profit by selling quantity of products Q_1 and Q_2 in two sub-markets, market I and market II respectively, when

(i)
$$\frac{dC}{dQ} = \frac{\delta R}{\delta Q_1} = \frac{\delta R}{\delta Q_2}$$

- (ii) $MC = AR_1 = AR_2$
- (iii) $MR_1 = MR_2 = AC$
- (iv) None of the above
- (g) Under perfect competition, a firm attains equilibrium when its

(i)
$$\frac{dC}{dQ} = \frac{dR}{dQ}$$

(ii)
$$\frac{d^2C}{dO^2} = + \text{ve}$$

(iii)
$$\frac{d\pi}{dQ} = 0$$
 and $\frac{d^2\pi}{dQ^2} = -\text{ve}$

(iv) All of the above

22P/1356

(h) The budget constraint for a consumer consuming two goods x and y with his money income M, given the price of $x(P_x)$ and price of $y(P_y)$ is expressed as

(i)
$$\frac{MU_x}{P_x} = \frac{MU_y}{P_y}$$

(ii)
$$XP_x + YP_y \le M$$

$$(iii) XP_x + YP_y \ge M$$

- (iv) None of the above
- **2.** Answer any four of the following: $4\times4=16$
 - (a) Explain the rank of a matrix with the help of an example.
 - (b) Explain the properties of CES production function.
 - (c) If $z = x^3 e^{2y}$, then find $\frac{\delta z}{\delta x}$ and $\frac{\delta z}{\delta y}$.
 - (d) What are the conditions of unconstrained optimization for the function with one independent variable and more than one independent variables?
 - (e) A consumer consumes two goods x_1 and x_2 . His utility function is given by $U = u(x_1, x_2)$ and the budget line is given by $B = x_1P_1 + x_2P_2$. Find out the conditions of consumer's equilibrium.

3. (a) (i) Solve the following difference equation:

$$y_{t+1} - y_t = 3$$
 with $y_0 = 5$

(ii) Solve the following Cobweb model:

$$Q_{d} = \alpha - \beta P_{t}$$

$$Q_{s} = -y + \delta P_{t-1}$$

$$Q_{d} = Q_{s}$$

$$Or$$

$$7$$

- (b) (i) Write a short note on Cobweb market model.
 - (ii) Given the demand function $Q_d = 10 2P_t$

and the supply function $Q_s = -5 + 3P_{t-1}$. What is intertemporal equilibrium price? Find the time path of P_t and determine whether stable equilibrium is attainable or not. 1+5+1=7

- **4.** (a) (i) If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}_{2 \times 2}$, then show that $A^2 3I = 2A$
 - (ii) Solve the following set of equations by using Cramer's rule:

$$3x + 2y = 12$$
$$2x + 3z = 16$$

4y + 2z = 20

4

4

(iii)	Write down two economic applications of matrix algebra.	2				
	Or					
(b) (i)	Explain with examples any five properties of determinant.					
(ii)	Find the value of the following determinant:	1				
dawdoO	2 2 4 9 4 1 0 2 4 1 0 0 3 2 1 1					
(iii)	What is idempotent matrix?					
(a) (i)	Show that the indifference curve representing the utility function of a consumer consuming two goods x and y is negatively slopped.					
	(ii) Given the production function $Q = AK^{\alpha}L^{1-\alpha}$, find—					
(1) average productivity of labour;						
	(2) average productivity of capital;					
echo a monte	(3) marginal physical productivity of labour;					
	(4) marginal physical productivity of capital. 1+1+2+2=6					
1356	(Continued)					

(iii)	What are the economic applications						
	of	first-order	and	second-order			
	partial differentiations?						

Or

- (b) (i) Derive elasticity of substitution for C-D production function.
 - (ii) Verify whether the Euler's theorem is satisfied or not for the following production function:

$$Q = L^{5/3}K^{-2/3}$$

- (iii) Given the utility function, $U = u(x, y) = \log(x^2 + 4y^2)$, find the marginal utility of x and marginal utility of y. 2+2=4
- 6. (a) In a monopoly market, the AR and TC functions are AR = 100-2Q and C=50-4Q+2Q². The government imposes a specific tax of ₹8 per unit. Examine the effect of tax on equilibrium output, price and profit. 4+3+3=10

Or

(b) The demand functions of a monopoly in two different markets are given by $P_1 = 53 - 4Q_1$ and $P_2 = 29 - 3Q_2$

4

6

5.

and the total cost function is C = 20 + 5Q, where $Q = Q_1 + Q_2$. Find—

- (i) equilibrium outputs Q_1 and Q_2 ;
- (ii) equilibrium prices P_1 and P_2 ;
- (iii) maximum profit. 6+2+2=10

4

7

- 7. (a) (i) Maximize $Y = 5x_1x_2$, subject to $x_1 + 2x_2 = 8$ by applying Lagrange multiplier.
 - (ii) Given the utility function, U=2+x+2y+xy and the budget constraint 4x+6y=94. Find out equilibrium level of x and y which will maximize total utility.

Or

- (b) (i) Minimize $Y = x_1^2 x_1x_2 + 2x_2$, subject to $2x_1 + 4x_2 = 12$.
 - (ii) A producer desires to minimize his cost of production, C = 2L + 5K, where L and K are the inputs, subject to the satisfaction of the production function Q = LK. Find the optimum combination of L and K in order to minimize cost of production when output is 40.

+++